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1. Введения  

В данной работе рассматривается система кросс диффузии, с нелинейными 

граничными условиями описывающие процесс теплопроводности в неоднородной 

среде 

( )
2

1

3 , , 0,i

P

mi i i
i

u u u
x u x R t

t x x x


−

−

− +

   
=   

     

                   (1) 

( ) ( )
2

1

3 0, 0, , 0,i i

P

m qi i
i i

u u
u t u t t

x x

−

−

−

 
− = 

 
       (2)  

( ) ( )0,0 , ,i iu x u x x R+=           (3) 

где ( ) ( )1
n

x x = + ,  1 2max , 1P m m + , 1,im    ( )0 1,2 ,iq i =
 

 ( )0iu x  -

неотрицательные непрерывные функции с компактным носителем вR+ .  

Физико-математическая природа кросс-диффузии заключается в описании 

динамики расселения нескольких видов или компонентов, где движение одного 

компонента существенно зависит не только от его собственного состояния, но и от 

состояния других компонентов. Этот механизм особенно важен в контексте 

перенаселения (overcrowding dispersal), когда организмы или частицы стремятся 

рассредоточиться для снижения локальной плотности. Соответственно приложения 

реакции-кросс-диффузии системы широко распространены в литературе и включают 

формирование развития паттернов в биологии [1], электрохимию [2], моторику рака [3-

5] и биопленки [6]. Введение кросс-диффузии в стандартных моделях реакции-

диффузии было показано, что для предотвращения явлений взрыва, связанных с такими 

системами, отсутствует перекрестная диффузия [7]. Явные аналитические решения 

этих сложных и часто нелинейно связанных систем дифференциальных уравнений в 

частных производных редко существуют и таким образом, несколько численных 

методов были применены для получения приближенных решений. 

Такие системы реакции-диффузии не только математически сложны, но и имеют 

важные практические приложения [2,4–6]. В экологии они используются для 

моделирования распространения, конкуренции и эволюции видов. В области 

теплопередачи они описывают передачу тепла и распределение температуры внутри 

материалов, а в химических реакциях используются для прогнозирования скорости 

реакции и производства продуктов [5,6,10]. Поэтому глубокое изучение природы и 

динамического поведения решений таких систем уравнений важно для понимания 

механизмов природных явлений и оптимизации инженерного проектирования и 

стратегий управления. 

Кроме того, кросс-диффузионные модели встречаются в различных областях 

естествознание. Например, в физических системах (физика плазмы) [8-10], в химических 

системах (динамика электролитических растворов), в биологических системах (кросс-

диффузионный транспорт, динамика популяционных систем), в экологии (динамика 

возрастной структуры леса), в сейсмологии – модель Бурриджа-Кнопоффа, 

описывающая взаимодействие тектонических плит [11-14]. В последние годы при 

исследовании биологической популяции и движение тектонических плит активно 

применяются математические модели с кросс - диффузией [14, 15].  
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В последнее годы интенсивно изучается условие глобального существования 

решений и условие возникновения режима с обострением (blow-up) (см. [1-7, 11, 13-17]). 

В работе [18, 19] изучены условия глобальной разрешимости и неразрешимости по 

времени решение и установили оценку решения вблизи времени взрыва нелокальной 

задачи диффузии  

, , 0, 0 0,t xx t xxu u x T = =        (4) 

( ) ( )0, , 0, , 0 ,p q

x xu t u t u t T   − = − =     (5) 

( ) ( )0,0 ,u x u x= ( ) ( )0,0 ,x x = 0x  .   (6) 

Доказано, что если ( )( )1 1pq   − − , то всякое решение задачи (4)-(6) является 

глобальным.  

Система уравнений (1) при 1im   ( )1,2i =  описывает процессы с конечной 

скоростью распространения возмущений. 

Система (1) имеет ограниченные автомодельные решения с компактным 

носителем следующего вида 

( ) ( ) ( ) ( )( ), , 1i

i iu x t T t f x T t
 

 
− −

= + = + + , ( ) ( )1
n

x x = +     (7) 

где 0T  ,  

( )( ) ( )( ) ( )( )
( )( )( ) ( )( )( ) ( )( )( )

3 3

3 3

1 1 1 1 1 2

1 1 1 1 1 1 2 1

i i i i i

i i i i i

q q q m q P

q q P n q m n q P n
 − −

− −

− − − − − − − −
=

− − + − − − + − − − +
 ,

( )1 1

1
i

i

n

q




− +
=

−
. 

а функции ( ) ( )( ),     являются решением следующей задачи 

1

2

1 1

3 0

p

m n ni i i
i i i

d d d d

d d d d

  
    

   

−

− +

−

 
+ + = 

 
 

    (8) 

( ) ( )1

2

1

3 0 0i

P

qm i i
i i

d d

d d

 
 

 

−

−

− =      (9) 

которая получается после подстановки (7) в (1)-(3) и некоторых упрощений. 

Рассмотрим следующие функции 

( ) ( ) i

i iA a
  = −%      (10) 

где 
1

p n

p


+
=

−
, 

( )2

3

( 1)( 1 )

( 2) 1 ( 1)

i
i

i i

P P m

P m m


−

− − −
=

− − − −
, 0a  . 

 

2. Основные результаты 

Теорема 1.  Пусть  3max , 1i iP m m − + , тогда решение с компактным носителем 

системы уравнений (11) при 

1P

P na
−

+→  имеет асимптотику 
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( ) ( ) ( )( )1 1 .i i iс    = +%       (11) 

где 
( )

1

1

1

sgn

1

P

i

i
P

i

c
n

 




−

−

 
 −

=  
+ 

 
 

 

Доказательство. Ищем решение системы уравнений (11) в следующем виде 

( ) ( ) ( )i i iw    = %              (12) 

где 1ln
P n

Pa 
+

−
 

= − − 
 

, ( )iw   - неотрицательные и ограниченные функции, →   

при 

1P

P na
−

+→ . После подстановки (12) в (8) получим следующую систему  

( ) ( )
( )

( ) ( )

3 3 1 12

3

1 12

3

1
, ,

0.

i

i

i
i i i i i i i i iP mP

i i i

i
iP mP

i i i

d n e w
Q w w Q w w w

d a e A A

e
w

a eA A










 

   



 

−

− − −− −−

−

−

− −−−

−

   + 
+ − + − −   

−   

− =
−

    (13) 

где ( ) ( )1

3 3, im

i i i i i i iQ w w w w w−

− −
= − , ( ) ( )3 1

2 3 3 3, im

i i i i i iQ w w w w w− −

− − −
= − . 

Отметим, что изучение решений последней системы уравнений является 

равносильным изучению тех решений системы уравнений (8), каждое из которых в 

некоторой промежутке  )0 , , +  удовлетворяет неравенствам: 

( ) 0, 0i i i iw w w   −  , 

( ) 3 30, 0i i i iw w w  − −
 −  . 

Покажем, что решения ( ) ( )( )1 2,w w   системы уравнений (13) имеют конечные 

пределы при →+ . Пусть  

( ) ( )

( ) ( )
1 1 1 2

2 2 1 2

, ,

, .

h Q w w

h Q w w





=


=

      (14) 

Тогда систему (16) приведем к виду 

( ) ( )
( )

( ) ( )

1 12

3

1 12

3

1

0.

i

i

i
i i i i iP mP

i i i

i
iP mP

i i i

wn e
h h w

a e A A

e
w

a eA A










   

  



 

−

−− −−

−

−

− −−−

−

   +
 = − − − − +   

−   

+ =
−

 

Для анализа решений последней системы уравнений рассмотрим следующие 

вспомогательные функции 
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( )
( )

( ) ( )

1 12

3

1 12

3

1
,

0.

i

i

i
i i i i i iP mP

i i i

i
iP mP

i i i

wn e
R w

a e A A

e
w

a eA A










    

  



 

−

−− −−

−

−

− −−−

−

   +
= − − − − +   

−   

+ =
−

 

где i , 1,2i =  - действительные числа. Видно, что в соответствующей правой части 

последнего тождества функций ( ),i iR   , 1,2i =  сохраняют знак, т.е. удовлетворяют 

одно из неравенств 

( ) ( )1 1, 0, , 0.i iR R           (15) 

в некотором промежутке ) )  )
3 3 0, , , , ,

i i i i       
− −

 +  +  +  . Допустим, что для 

функций ( ),i iR   , 1,2i =  пределы при →+  не существуют. Тогда в силу 

колеблемости функций ( ),i iR   , 1,2i = , прямая ( 1,2)i iR i= =  пересекает 

бесконечное число раз их графиками на интервале ) )
3

, ,
i i  

−
 +  +  . Но, на 

интервале ) )
3

, ,
i i  

−
 +  +   выполняется одно из неравенств (15) и поэтому 

пересечение их графиков бесконечное число раз невозможно. Следовательно, графики 

функций ( ),i iR   , 1,2i =  пересекают прямую ( 1,2)i iR i= =  на интервале 

) )
3

, ,
i i  

−
 +  +   только один раз. Тогда, для функций ( ),i iR   , 1,2i =  существует 

предел при →+ . Следуя (17) для ( )1 1,G   , ( )2 2,G   , имеем  

( ) ( ) ( ) ( )
1 111 0 0

3 3 1
i

i
m PPm

i i i i i i i iR w w w w w  
− −−−

− −
= − = +  

Поэтому необходимо, чтобы 

( ) ( ) ( )1 1 11 12 2

3 3

1
lim 0.

i i

i i
i i i iP Pm mP P

i i i i i i

wn e e
w w

a e a eA A A A

 

 


  

    

− −

− −− −− −− −→+
− −

   +
− + − − =   

−  −  
 

Отсюда, с учетом следующего предельного перехода 

lim 0
e

a e





−

−→+
=

−
, 

легко убедиться в том, что 
( )

1

1

0

1

sgn

1

P

i

i
P

i

w
n

 




−

−

 
 −

=  
+ 

 
 

при →+ .  

3. Численный анализ решений 

Используя метод конечных разностей, построим численную систему. Для этого 

пространственная система координат уравнений (1) аппроксимируется со вторым 

порядком точности, а временная компонента – с первым. Процедура строится 

итеративно, а для решения линейной системы уравнений используется метод прогонки. 

Хорошо известно, что основной проблемой при численном решении нелинейной задачи 
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является выбор подходящего начального приближения для итерационного процесса. 

Качественное исследование нелинейной задачи используется для создания функций, 

отражающих определенные аспекты предполагаемого решения. Эти функции затем 

используются для решения конкретных задач. В зависимости от значений числовых 

параметров уравнений, эта задача может быть решена выбором подходящего 

начального приближения, которое использовалось в вычислениях с помощью 

приведенных ранее асимптотических формул. Результаты численных расчетов были 

взяты за основу. Ниже мы продемонстрируем численные методы и некоторые 

результаты вычислительного эксперимента. 

Рассмотрим систему уравнений (1) с начальными данными (3) и краевыми 

условиями (2) и  

( ) ( )

( ) ( )
1 1

2 2

, ,

, ,

u b t t

u b t t





=


=

 

 

Для удобства перепишем систему (1) –(3) следующим образом 

( ) ( )

( ) ( )

1 1
1 2

2 2
1 2

, ,

, ,

u u
x K u u

t x x

u u
x B u u

t x x





    
=       


    =      

     (16) 

( ) ( ) ( )

( ) ( ) ( )

1

2

1
1 2 1

2
1 2 2

, 0, 0, ,

, 0, 0, , 0,

q

q

u
K u u t u t

x

u
B u u t u t t

x


− = 


− = 
 

     (17) 

( ) ( ) ( ) ( )1 10 2 20,0 , ,0 , ,u x u x u x u x x R+= =      (18) 

где 1

2

1 1
1 2 2( , )

p

m u
K u u u

x

−

− 
=


, ( ) 2

2

1 2
1 2 1,

P

m u
B u u u

x

−

− 
=


. 

Теперь построим равномерную сетку hS  по x  с шагом h : 

 , 0, 1,2, , , ,h iS x i h h i n n h b= =   =  =  

и временную сетку 

 , 0, 1,2, , , , 0 .jV t j j m m T T   = =   =  =   

Построим разностную схему. Для этого используем метод баланса и неявную 

разностную схему:  

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

1
1 1 1 11 1

1 1 1 1 1 1 1 1 12

1
1 1 1 11 2

1 1 2 1 2 1 2 2 12

1
1 ,

1
1 ,

j j
n j j j ji i

i i i i i i i

j j
n j j j ji i

i i i i i i i

u u
x K u u u K u u u

h

u u
x B u u u B u u u

h





+
+ + + +

+ + −

+
+ + + +

+ + −

 −
 + = − − −  


−  + = − − −

 

  (19) 

2,3, , 1i n= − , 0,1, , 1j m= − , 
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( )

( )

0

1 1

0

2 2

,0 ,
0,1, , ,

,0 ,

i i

i i

u u x
i n

u u x

 =
=

=

K     (20) 

( ) ( )

( ) ( )

1

2

1 1

1,1 1,0

1 1 2 1,0

1 1

2,1 2,0

1 1 2 1,0

, ,

0,1, , 1,

, ,

j j
q

j

j j
q

j

u u
K u u u

h
j m

u u
B u u u

h

+ +

+ +

 −
− =


= −
−

− =


K   (21) 

( )

( )

1 1

2 2

,
2,3, , .

,

j

n j

j

n j

u t
j m

u t





 =
=

=

K      (22) 

где ( )1 2,K u u , ( )1 2,B u u  вычисляются по одной из следующих формул 

)
( )

( )

1 1 1 2 2 1
1 2

1 1 1 2 2 1
1 2

, , ,
2 2

, , ,
2 2

i i i i
i

i i i i
i

u u u u
K u u K

a
u u u u

B u u B

− −

− −

+ +  
=  

  


+ +  =    

      (23) 

)
( )

( ) ( )

( )
( ) ( )

1 2 1 1 2 1

1 2

1 1 2 1

1 2

, ,
, ,

2

, ,
, .

2

i i i i

i

i i i i

i

K u u K u u
K u u

b
B u B u u

B u u


− −

− −

+
=


+ =



      (24) 

Видно, что системы алгебраических уравнений (19) нелинейные относительно 

1ju +
 и 

1j +
. Для численного решения таких систем нелинейных уравнений применимы 

различные итерационные методы. Используем для них метод простой итерации: 

( )

( )

1
1 1 1 1 1

1 1 1 11 1
1 2 1 1 1 2 1 1 12

1
1 1 1 1

1 1 12 2
1 1 2 1 2 1 2 22

1
1 ,

1
1

s s
j j s s s ss sn j j j ji i

i i i i i i i

s s
j j s s ss sn j j ji i

i i i i i i

u u
x K u u u K u u u

h

u u
x B u u u B u u u

h





+
+ + + + +

+ + + +

+ + −

+
+ + + +

+ + +

+ +

 −       
+ = − − −       

       

−     
+ = − − −    

    

1
1

1 ,
s
j

i

+
+

−





   
   
   

   (25) 

где 0,1,2,s = . 

Известно, что итерационные методы требуют подходящего начального 

приближения, обеспечивающего быструю сходимость к точному решению и 

сохраняющего физический смысл задач. При этом в качестве подходящих начальных 

приближений выбираются выше полученные асимптотические формулы.  

Значения начальной итерации для каждого шага по времени 
1

1

s

iu
+

, 
1

2

s

iu
+

 берутся из 

предыдущего шага по времени: 1

0
1

1

j ju u+ = , 
0

1

2 2

j ju u+ = . При счете по итерационной схеме 

задается точность итерации, при которой процесс продолжается до тех пор, пока не 

выполняются условия 
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1

1 1
0

1

2 2
0

max ,

max .

s s

i i
i n

s s

i i
i n

u u

u u





+

 

+

 


− 


 − 


 

Введем обозначения 
1

1 1

j

i iu u += , 
1

2

j

i iu u += . Тогда разностные уравнения (25) 

можно записать в виде 
1     1     1     

1 111 1 1 1 1 1

1     1     1     

2 222 1 2 2 1 2

,

,

s s ss s s s

i iii i i i

s s ss s s s

i iii i i i

A u C u B u F

A u C u B u F

+ + +

− +

+ + +

− +


− + = −


 − + = −

     (26) 

где 
1iA , 

2iA , 
1iB , 

2iB , 
1iC , 

2iC , 
1iF , 

2iF  учитывая формулы (22), определяются 

следующим образом: 

( )

( )

1 1

1 1 22

2 2
1 11 1 1 1

1 11 1 1 1 1 1 2
2 2 12

,
1

,
2 1

s s

i in

i

P P
s s s s

m mj j j js s
j ji i i i
i in

i

A K u u
h x

u u u u
u u

h hh x





− −
− −+ + + +

+ +− − −
−

 
= = 

 +

 
  −   − 

= +    
+     

 

 

( )

( )

2 2

2 1 22

2 2
1 11 1 1 1

1 12 2 1 2 1 2 2
1 1 12

,
1

,
2 1

s s

i in

i

P P
s s s s

m mj j j js s
j ji i i i
i in

i

A B u u
h x

u u u u
u u

h hh x





− −
− −+ + + +

+ +− − −
−

 
= = 

 +

 
  −   − 

= +    
+     

 

 

( )

( )

1 1

1 1 1 22

2 2
1 11 1 1 1

1 11 1 1 1 1 1
2 1 22

,
1

,
2 1

s s

i in

i

P P
s s s s

m mj j j js s
j ji i i i
i in

i

B K u u
h x

u u u u
u u

h hh x





+

− −
− −+ + + +

+ ++ −
+

 
= = 

 +

 
  −   − 

= +    
+     

 

 

( )

( )

2 2

2 1 1 22

2 2
1 11 1 1 1

1 12 1 2 2 2 1
1 1 12

,
1

,
2 1

s s

i in

i

P P
s s s s

m mj j j js s
j ji i i i
i in

i

B B u u
h x

u u u u
u u

h hh x





+

− −
− −+ + + +

+ ++ −
+

 
= = 

 +

 
  −   − 

= +    
+     

 
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( )
1 1 2 1 1 22

, , 1,
1

s s s

i i in

i

C K u u K u u
h x


+

    
= + +    

    +
 

( )
2 1 2 1 1 22

, , 1,
1

s s s

i i in

i

C B u u B u u
h x


+

    
= + +    

    +
 

1
1 ,

ss
j

i iF u +=  

1
2

ss
j

i iF  += . 

Значения концевых ординат на концах отрезка 0 x b 
 
можно получить по 

формуле Милна: 

2 1 0

0

4 3

2

i i i iu u u u

x h

 − + −



,  1 23 4

2

i in in in

n

u u u u

x h

− − − +



, 

которые считаются более точными. 

Для численного решения системы алгебраических уравнений (26) применяется 

метод прогонки. Согласно методу прогонки 

( )

( )

1 1 1 1 1

2 2 2 2 1

,

,

i i i i

i i i i

u u

u u

 

 

+

+

= +


= +

      (27) 

где 
1 2 1 2,   , ,i i i i     - коэффициенты, которые вычисляются по следующим формулам: 

1
1 1

1 1 1

2
2 1

2 2 2

,

,

i
i

i i i

i
i

i i i

B

C A

B

C A







+

+


= −


 =
 −

 

1 1 1
1 1

1 1 1

2 2 2
2 1

2 2 2

,

,

i i i
i

i i i

i i i
i

i i i

A F

C A

A F

C A











+

+

+
= −


+ =

 −

 

где 1,2,i n= . Значения 
10 , 

20 , 
10 , 

20  находятся из краевых условий (21). 

Используя вышеизложенные численные схемы, проведен вычислительный 

эксперимент. Приведем некоторые результаты численных экспериментов. Шаг сетки 

достаточно мелкий h=0.05, число узлов N=2500 и точность итерации задается 
510 −= . 

Счет проводился до t=2 с шагом 0.02 = . В качестве начального приближения для 

итерационного процесса брались формулы (10), (14). 
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Рис.1.Численное решение задачи(1)-(3) при 1 2 1 22.5, 2.7, 3.7, 1.85, 1.5q q p m m= = = = = . 

 

 
Рис. 2. Численное решение задачи (1)-(3) при 1 2 1 22.75, 2.8, 3.25, 2, 1.6q q p m m= = = = = . 
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Рис. 3. Численное решение задачи (1)-(3) при 1 2 1 22.3, 2.2, 3, 1.9, 1.4q q p m m= = = = = . 

4. Вывод 

На рис. 1-3 представлены графики результатов численного решения задачи (1)-

(3) при 1( 1,2)im i = , соответствующей случаю медленной диффузии. При 

1( 1,2)im i = , как следует из асимптотических формул (7), (11) и графиков, 

перемещение объекта происходит с конечной скоростью. Глубина проникновения 

диффузионной волны зависит от времени и фронта волны (точка, в которой ( ),u x t , 

( ),x t  обращаются в нуль) для каждой среды, находящейся в конечной точке: 

( ) ( )1p p
x a T t





−
= +   .  

Результаты численных экспериментов показывают быструю сходимость 

итерационного процесса за счет удачного выбора начального приближения. Тем самым 

предложенный метод даёт возможность решить проблему выбора подходящего 

начального приближения. 

Исследование З.Р.Рахмонова поддержано Министерством высшего образования, 

науки и инноваций Республики Узбекистан (проект № ФЛ-8824063232). 
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